Лекция №2, Моделирование систем
Код роботи: 2197
Вид роботи: Лекція
Предмет: Формализация и моделирование систем (Формалізація та моделювання систем)
Тема: №2, Моделирование систем
Кількість сторінок: 21
Дата виконання: 2017
Мова написання: російська
Ціна: безкоштовно
1. Понятие модели системы. Классификация моделей
2. Статические модели. Динамические модели
2.1. Статические модели
2.1.1. Модель «черного ящика»
2.1.2. Модель состава системы
2.1.3. Структурная модель системы
2.2. Динамические модели
2.2.1. Динамические модели «черного ящика»
2.2.2. Динамическая модель состава
2.2.3. Динамическая структурная модель
3. Методы моделирования систем
3.1. Методы коллективной генерации идей (мозгового штурма)
3.2. Метод «Дельфи»
3.3. Разработка сценариев
3.4. Методы экспертного анализа (экспертных оценок)
3.5. Методы типа дерева целей (структуризации)
3.6. Морфологические методы
1. Понятие модели системы. Классификация моделей
Неотъемлемой частью системного анализа является моделирование – процесс исследования реальной системы, включающий построение модели, изучение ее свойств и перенос полученных сведений на моделируемую систему.
Рис. 1 - Процесс моделирования
Если вы хотите соорудить собачью конуру, то можете приступить к работе, имея в наличии лишь кучу досок, горсть гвоздей, молоток, плоскогубцы и рулетку. Несколько часов работы после небольшого предварительного планирования – и вы, надо полагать, сколотите вполне приемлемую конуру, причем, скорее всего, без посторонней помощи. Если конура получится достаточно большой и не будет сильно протекать, собака останется довольна. В крайнем случае, никогда не поздно начать все сначала - или приобрести менее капризного пса.
Если вам надо построить дом для своей семьи, вы, конечно, можете воспользоваться тем же набором инструментов, но времени на это уйдет значительно больше, и ваши домочадцы, надо полагать, окажутся более требовательными, чем собака. Если у вас нет особого опыта в области строительства, лучше тщательно все продумать перед тем, как забить первый гвоздь. Стоит, по меньшей мере, сделать хотя бы несколько эскизов внешнего вида будущей постройки. Без сомнения, вам нужно качественное жилье, удовлетворяющее запросам вашей семьи и не нарушающее местных строительных норм и правил, - а значит, придется сделать кое-какие чертежи с учетом назначения каждой комнаты и таких деталей, как освещение, отопление и водопровод. На основании этих планов вы сможете правильно рассчитать необходимое для работы время и выбрать подходящие стройматериалы. В принципе можно построить дом и самому, но гораздо выгоднее прибегнуть к помощи других людей, нанимая их для выполнения ключевых работ или покупая готовые детали. Коль скоро вы следуете плану и укладываетесь в смету, ваша семья будет довольна. Если же что-то не сладится, вряд ли стоит менять семью – лучше своевременно учесть пожелания родственников.
Моделирование – это устоявшаяся и повсеместно принятая инженерная методика. Мы строим архитектурные модели зданий, чтобы помочь их будущим обитателям во всех подробностях представить себе готовый продукт. Иногда прибегают даже к математическому моделированию зданий, чтобы учесть влияние сильного ветра или землетрясения.
Итак, что же такое модель? Попросту говоря, она является упрощенным представлением реальности. Модель – это чертеж системы: в нее может входить как детальный план, так и более абстрактное представление системы "с высоты птичьего полета". Хорошая модель всегда включает элементы, существенно влияющие на результат, и не включает те, которые малозначимы на данном уровне абстракции. Каждая система может быть описана с разных точек зрения, для чего используются различные модели, каждая из которых, следовательно, является семантически замкнутой абстракцией системы. Модель может быть структурной, подчеркивающей организацию системы, или поведенческой, то есть отражающей ее динамику.
Зачем мы моделируем? На это есть одна фундаментальная причина. Мы строим модели для того, чтобы лучше понимать разрабатываемую систему.
Моделирование позволяет решить четыре различных задачи:
- визуализировать систему в ее текущем или желательном для нас состоянии;
- определить структуру или поведение системы;
- получить шаблон, позволяющий затем сконструировать систему;
- документировать принимаемые решения, используя полученные модели.
Моделировать сложную систему необходимо, поскольку иначе мы не можем воспринять ее как единое целое.
Для выработки обоснованных и эффективных управленческих воздействий, обеспечивающих целенаправленное развитие системы, необходимо располагать ее моделью. В этой связи построение модели управляемой системы является ключевой задачей системного анализа.
Моделью называют объект, который в определенных условиях может заменить оригинал, воспроизводя интересующие свойства и характеристики оригинала. Это искусственно создаваемый образ конкретного объекта, процесса или явления, в конечном счете, любой системы.
В системном анализе под моделью понимается некоторое представление о системе, отражающее наиболее существенные закономерности ее структуры и процесса функционирования и зафиксированное на некотором языке или в другой форме.
Модели подразделяются на 2 класса: физические и абстрактные.
- Простейшая физическая модель – детская игрушка.
- Абстрактные модели могут быть трех видов: математические, логические и графические.
- Математические модели – это формулы, отражающие поведение, зависимости реального мира. Конечно, это грубое описание, но зачастую является достаточным.
- Логические модели – всевозможные соотношения, условия принятия решений.
- Графические модели – это всевозможные чертежи, блок-схемы. Могут дополняться математическими моделями.
2. Статические модели. Динамические модели
Остановимся на основных способах описания моделей.
Принципиально различных способов описания систем три (классификация по способу преобразования входа в выход): модель «черного ящика», модель состава и структурная модель (модель «белого ящика»). Это в одинаковой степени относится как к статическим моделям, отображающим фиксированное состояние системы, так и к динамическим моделям, отображающим характер взаимодействия элементов исследуемой системы между собой и с внешней средой.
2.1. Статические модели
2.1.1. Модель «черного ящика»
Модель «черного ящика» является простейшим отображением реальной системы (некоторого фрагмента реального мира), в котором полностью отсутствуют сведения о внутреннем содержании этого фрагмента, а задаются только входные и выходные связи системы со средой (рис. 2).
Рис. 2 - Входные и выходные связи системы со средой
Рис. 3 - Модели черный ящик
Даже «стенки ящика», т.е. границы между системой и средой, в этой модели обычно не описываются, а лишь подразумеваются. Такая модель, несмотря на внешнюю простоту и отсутствие сведений о внутренности системы, часто оказывается очень полезной, а иногда и единственно возможной. Например, при исследовании элементарных частиц, изучения влияния лекарства на живой организм, определения последствий воздействия человека на природу, анализ возможностей влияния на экономическое развитие суверенного государства и т.д. мы лишены возможности прямого вмешательства в исследуемую систему, и иначе чем через фиксацию ее взаимодействия с внешней средой по входам и выходам не сможем составить представление о системе, процессе или явлении.
Бросающаяся в глаза внешняя простота модели «черного ящика» очень обманчива. Кажется, просто перечислить входы-выходы системы – и модель готова. Но как только это потребуется сделать для конкретной системы, исследователь сталкивается с множеством трудностей.
2.1.2. Модель состава системы
В данных моделях рассматривается «внутренность» «черного ящика». Она не является однородной, что позволяет различать составные части самой системы, которые могут быть разбиты на составные компоненты меньшего размера. Те части системы, которые рассматриваются как неделимые, называют элементами, а части, состоящие более чем из одного элемента, называют подсистемами.
Модели состава одной и той же системы могут отличаться друг от друга, во-первых, из-за различных определений понятия «элементарность», во-вторых, модель зависти от цели, т.е. от различных точек зрения, в-третьих, границы между подсистемами условны.
Рассмотрим пример модели состава системы «вуз» с точки зрения студента (рис. 4).
Рис. 4 - Фрагмент модели состава системы вуз
2.1.3. Структурная модель системы
Это некоторый симбиоз модели состава и модели «черного ящика». В структурной модели указываются элементы системы, связи между элементами внутри системы и связи определенных элементов с окружающей средой.
Совокупность необходимых и достаточных для достижения цели исследования отношений между элементами называется структурной моделью системы.
О сложности системы судят по числу и разнообразию отношений между элементами. Новые связи образуются как в результате развития системы, так и в результате ее расширения. Появление новых элементов в системе приводит к возникновению дополнительных связей, число которых может расти экспоненциально.
Разнообразие и множественность связей, существующих в реальных системах, обусловливают физическую невозможность их полного учета при структурном моделировании. Поэтому при моделировании отбираются только те связи, которые играют существенную роль в обеспечении устойчивости исследуемой системы. Отбор существенных связей осуществляет системный аналитик, руководствуясь целью исследования.
Для построения и исследования структурных моделей сложных систем широко применяется теория графов, которая выделилась в отдельный раздел математики.
Рис. 5 - Фрагмент модели состава системы Сборка компьютеров
2.2. Динамические модели
Модели, описывающие поведение системы, фиксирующие изменения, происходящие с течением времени, адекватно отражающие последовательность протекаемых в системе процессов, называются динамическими (рис. 6).
В теории систем различают два вида динамики: функционирование и развитие. Под функционированием подразумеваются процессы, которые происходят в системе, стабильно реализующей фиксированную цель (функционирует предприятие, функционируют часы, функционирует городской транспорт и т.д.). Под развитием понимают изменение состояния системы, обусловленное внешними и внутренними причинами.
Развитие в большинстве случаев обусловлено изменением внешних целей системы. Характерной чертой развития является то, что существующая структура перестает соответствовать новым целям и для обеспечения необходимого соответствия приходится изменять структуру системы, т.е. осуществлять ее реорганизацию. Экономические системы (предприятия, организации, корпоративные образования) в условиях рыночной экономики для выживания в конкурентной борьбе должны постоянно находиться в фазе развития. Только постоянное обновление ассортимента выпускаемой продукции или оказываемых услуг, совершенствование технологии производства и методов управления, повышение квалификации и образованности персонала могут обеспечить экономической системе определенные конкурентные преимущества и расширенное воспроизводство.
2.2.1. Динамические модели «черного ящика»
При математическом моделировании динамической системы ее конкретная реализация описывается в виде соответствия между конкретными значениями некоторой интегральной характеристики системы С и моментами времени t.
Построение модели динамической системы равносильно построению отображения:
Т С: с(t) Î Ct
В динамической модели «черного ящика» предполагается разбиение входного потока х на две составляющие: u – управляемые входы, v – неуправляемые входы.
Рис. 6 - Динамическая модель черного ящика
Если даже считать y(t) результатом некоторого преобразования Ф процесса x(t), т.е. y(t)= [x(t)], то в модели «черного ящика» предполагается, что это преобразование неизвестно.
При моделировании экономических систем необходимо помнить, что в них всегда присутствует задержка и, более того, следствие (результат) может проявиться совсем не в том месте, где его ожидали. Таким образом, имея дело с экономическими системами, нужно быть готовым к тому, что последствия могут отстоять от вызвавшей их причины во времени и пространстве.
В экономике, например, это ярко демонстрирует процесс вывода на рынок нового товара. Как только на рынке появляется новый товар пользующийся спросом сразу находится много желающих его производить. Многие фирмы запускают производство этого товара и пока существует спрос наращивают его объемы. Рынок постепенно насыщается, но производители пока этого не ощущают. Когда объем производства превысит некоторое критическое значение, спрос станет падать. Производство товара, обладая определенной инерцией, еще некоторое время будет продолжаться. Начнется затоваривание складов готовой продукцией. Предложение сильно превысит спрос. Цена на товар упадет. Многие фирмы прекратят производство этого товара. И такая ситуация будет сохраняться до тех пор пока предложение не упадет до таких значений, что не сможет покрыть существующий спрос. Рынок сразу уловит складывающийся дефицит и отреагирует повышением цены. После чего начнется оживление производства и новый цикл «взлета-падения» рынка. Так будет продолжаться до тех пор, пока все не «устаканится» и на рынке останутся несколько производителей, которые либо договорятся между собой, либо интуитивно нащупают квоты производства товара, суммарный объем которых будет соответствовать требуемому соотношению спроса и предложения
2.2.2. Динамическая модель состава
Динамическому варианту модели состава соответствует перечень этапов развития или состояний системы на моделируемом интервале времени. Под состоянием системы будем понимать такую совокупность параметров, характеризующих пространственное положение системы, которая исчерпывающе определяет ее текущее позиционирование. Изменения в системе отображаются некоторой кривой – траекторией развития.
2.2.3. Динамическая структурная модель
В динамических системах элементы могут вступать в самые разнообразные отношения между собой. А если учесть, что каждый из них способен пребывать во множестве различных состояний, то даже при небольшом числе элементов они могут быть соединены множеством различных способов.
Как и в случае статической структурной модели, динамическая структурная модель представляет собой симбиоз динамической модели «черного ящика» и динамической модели состава. Другими словами, динамическая структурная модель должна увязать в единое целое вход в систему
,
промежуточные состояния
,
и выход
.
где U – множество управляемых входов u(t);
V – множество неуправляемых входов v(t);
– множество всех входов в систему;
T – горизонт моделирования системы;
Ct – промежуточное состояние системы в момент времени ;
Y – множество выходов системы.
В зависимости от того, отображаются ли промежуточные состояния системы строго определенной упорядоченной последовательностью, или одной неопределенной функцией в результате моделирования получают либо динамическую структурную модель сетевого типа, либо динамическую структурную модель аналитического типа.
Построение динамической структурной модели системы сетевого типа заключается в формализованном описании траектории ее развития путем задания промежуточных состояний системы и управляющих воздействий, последовательно переводящих систему из начального состояния в конечное состояние, соответствующее цели ее развития.
Поскольку из «начала» в «конец», как правило, существует множество путей, определение траектории развития системы может вестись по различным критериям (минимуму времени, максимуму эффекта, минимуму затрат и т.п.). Выбор критерия определяется целью моделирования системы.
Такой подход к моделированию динамических системы, как правило, приводит к сетевым моделям различных типов (сетевым графикам, технологическим сетям, сетям Петри и т.п.). Независимо от типа сетевой модели их сущность заключается в том, что они описывают некоторую совокупность логически увязанных работ, выполнение которых призвано обеспечить построение некоторой системы (предприятия, дороги) или перевода ее в другое состояние, соответствующее новым целям и требованиям времени.
Из приведенных типов динамических моделей сложных систем наибольшее практическое применение нашли структурные динамические модели сетевого типа. Они используются, для моделирования возможных последствий принимаемых решений, т.е. для составления моделей способных ответить на вопросы типа «что будет, если…», для ресурсного и календарного планирования процессов развития систем, а также для поддержки контрольных процедур в процессе отслеживания траектории системы. Динамические модели аналитического типа в экономике применяются реже, а если и применяются, то преимущественно для исследования макроуровневых систем.
Бизнес-модель – это описание деятельности организации, окружающей среды компании и как компания взаимодействует с этой средой. Формализация нужна для однозначного понимания исполнителями и заказчиками требований, ограничений и принимаемых решений.
3. Методы моделирования систем
В настоящее время арсенал методов анализа (моделирования) больших и сложных систем включает множество инструментов – от строгих методов математического моделирования до организационных методов, направленных на активизацию использования интуиции и опыта специалистов.
3.1. Методы коллективной генерации идей (мозгового штурма)
Главный принцип заключается в подборе специалистов разных профессий, опыта работы и квалификации. Необходимо обеспечить как можно большую свободу мышления, допускается высказывание любых идей, не допускается критика.
3.2. Метод «Дельфи»
В отличие от предыдущего отказ от публичного выражения мнений, последовательные индивидуальные опросы в форме анкетирования. Ответы экспертов обобщаются и вместе с новой дополнительной информацией поступают в распоряжение экспертов, после чего они уточняют первоначальные ответы. Исключается давление авторитетных специалистов.
Рис. 7 - Классификация методов моделирования систем
3.3. Разработка сценариев
Если искомое решение должно описывать реальное поведение объекта в будущем, то альтернативами являются различные последовательности действий и вытекающих из них событий, они имеют общее начальное состояние и различные траектории движения, и называются сценариями. Они являются предварительной информацией, на основе которой проводится дальнейшая работа по прогнозированию развития системы.
3.4. Методы экспертного анализа (экспертных оценок)
Для решения слабо формализованных задач. Разрабатывались для решения задачи структурирования и системной организации процесса получения и кодирования данных и знаний, источником которых является человек-эксперт.
3.5. Методы типа дерева целей (структуризации)
Цель делится на подцели, те в свою очередь на более детальные составляющие. Древовидные иерархические структуры используются при исследовании вопросов совершенствования организационных систем.
3.6. Морфологические методы
Систематический перебор вариантов решения проблемы или развития системы путем комбинирования выделенных элементов или их признаков, которые представляются в виде матриц-строк. Например, система телевизионной связи:
Независимая переменная |
Значение переменной |
Цвет изображения |
Черно-белое Одноцветное Двухцветное … Семицветное |
Размерность изображения |
Плоское / Объемное |
Градация яркости |
Непрерывные / Дискретные |
Звуковое сопровождение |
Без звука / Монофонический / Стереофонический |
Передача запахов |
Без передачи / С сопровождением запахов |
Обратная связь |
Без обратной связи / С обратной связью |
Моделирование широко распространено, поэтому достаточно полная классификация возможных видов моделирования крайне затруднительна хотя бы в силу многозначности понятия «модель», широко используемого не только в науке и технике, но и, например, в искусстве. Применительно к естественно-техническим, социально-экономическим и другим наукам принято различать следующие виды моделирования:
- концептуальное моделирование, при котором с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков истолковывается основная мысль (концепция) относительно исследуемого объекта;
- логико-математическое моделирование, при котором моделирование, включая построение модели, осуществляется средствами математики и логики;
- статистическое моделирование – численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки "наблюдений" модели. Метод статистического моделирования (метод Монте-Карло) – это способ исследования поведения вероятностных систем в условиях, когда не известны в полной мере внутренние взаимодействия в этих системах;
- аналитические (количественное) (методы классической математики, включая интегро-дифференциальное исчисление, методы поиска экстремумов функций, вариационное исчисление и т. п.); Наиболее полное исследование удается провести в том случае, когда получены явные зависимости, связывающие искомые величины с параметрами системы и начальными условиями ее изучения. Обратное позволяет изучить хотя бы некоторые общие свойства сложной системы, например, оценить устойчивость системы, характеристики надежности и т.п.;
- имитационное (программное) моделирование, при котором логико-математическая модель исследуемого объекта представляет собой алгоритм, реализованный в виде программы для компьютера. Когда явления в сложной системе настолько сложны и многообразны, что аналитические системы становятся слишком грубым приближением к действительности, системный аналитик вынужден использовать имитационное моделирование. В имитационной модели поведение компонентов сложной системы описывается набором алгоритмов, которые затем реализуют ситуации, возникающие в реальной системе. Моделирующие алгоритмы позволяют по исходным данным, содержащим сведения о начальном состоянии сложной системы, и фактическим значениям параметров системы отобразить реальные явления в системе и получить сведения о возможном поведении сложной системы для данной конкретной ситуации. На основании этой информации аналитик может принять соответствующее решение. Отмечается, что предсказательные возможности имитационного моделирования меньше, чем у аналитических моделей;
- графическое моделирование, при котором моделями являются схемы, (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специальными правилами их объединения и преобразования;
- интуитивное моделирование, которое сводится к мысленному эксперименту на основе практического опыта работников (широко применяется в экономике).
Перечисленные выше виды моделирования не являются взаимоисключающими и могут применяться при исследовании сложных объектов либо одновременно, либо в некоторой комбинации.
Математические модели являются основой аналитических исследований и имитационных экспериментов для ЭВМ. Остановимся на описании классов математических моделей, имеющих принципиально различный характер в подходе к построению моделей.
Детерминированные модели описывают поведение системы с позиций полной определенности состояний системы в настоящем и будущем (физические закономерности, химические формулы, программы обработки деталей и др.). Используются для планирования транспортных перевозок, при составлении расписания, распределении ресурсов, планировании производства, в материально-техническом снабжении.
Вероятностные модели описывают поведение системы в условиях воздействия случайных факторов, т.е. с позиций вероятностей реализации тех или иных событий. Для описания времени ожидания, обслуживания или длины очереди в системах массового обслуживания, для расчета надежности системы, определения риска от наступления нежелательного события и др.
Игровые модели дают возможность изучать конфликтные ситуации, в которых каждая из конфликтующих сторон придерживается своих взглядов, и характер поведения каждой из них диктуется личными интересами. Например, отношения двух или нескольких производителей одинакового товара.
Для того чтобы обеспечить выбор методов в реальных условиях, разумно разделить их на группы и выработать рекомендации по применимости при моделировании систем различных классов.
Такое разделение методов полностью согласуется с основной идеей системного анализа, которая заключается в сочетании формализованных и неформализованных представлений об исследуемой системе, что помогает в разработке методик, выборе методов постепенной формализации, отображения и анализа проблемной ситуации.
Для всех методов общее одно – итеративность – на любой последующей стадии должна быть возможность порождения новой альтернативы и включение ее в состав анализируемых.